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Abstract

Alu repeats are the most common type of repetitive DNA
sequences dispersed throughout the human genome. Technical
advances in the field of cytogenetics and molecular biology have
facilitated the analysis of epithelial tumors and hematologic
malignancies which has led to the observation of Alu elements in
and near sites often involved in chromosomal rearrangements.
Repair mechanisms of double strand breaks (DSB) such as homol-
ogous tecombination (HR) may rely on the sequence homology
of Alu repeats, potentially leading to chromosomal rearrange-
ments. Databases have confirmed the strong association between
Alu repeats, specifically the 26 bp consensus sequence and chro-
mosomal regions involved in deletions and translocations.
Although the Alu repetitive sequence is a potential “hotspot”
during homologous recombination, there are other cellular mech-
anisms that may play a more prominent role in the initiation of
chromosomal rearrangements.

infroduction

Chromosomal rearrangements are hallmarks of tumor cells,
and technical improvements in cytogenetic and molecular biol-
ogy techniques in recent decades have led o the identification of
many recurrent translocations, deletions and inversions that are
characteristic of a variety of hematologic and solid tumor malig-
nancies. Many different events can initiate chromosomal
rearrangements, including spontaneous chromosome breakage,
unequal crossing over, exposute to certain chemicals and viruses.
Nevertheless, despite extensive study, the mechanisms that gen-
erate these events are not as yet completely understood.

In recent years, investigators have demonstrated the involve-
ment of Alu repeat mediated recombination in the creation of
chromosomal aberrations (see review by Kolomietz et al., 2002).
The present article summarizes the basic findings of such
research, focusing on the role of Alu repeats in the genesis of
chromosomal aberrations observed in malignant cells, both from
epithelial rtumors and hematological malignancies.

Historical Background of the Study of Tumor Celis

The study of tumor cells was first published in 1890 by David
von Hansemann who discovered mitotic abnormalities in malig-
nant tissue. In 1914, Theodore Boveri published his somatic
mutation theory that genetic imbalances of the cell’s mitotic
structures could lead to chromosomal aneuploidy, the initiating
“factor in tumorigenesis. However, at that time, the precise mech-
anisms that contributed to the phenotype of a cancer cell could
not be verified due to technical limitations in visualizing chro-
mosomes. The discovery of the correct number of human chro-
mosomes by Tjio and Levan in 1956 was followed by the
landmark finding of the Philadelphia chromosome and its associ-

ation with chronic myelogenous leukemia (CML) in 1960 by
Nowell and Hungerford. The 1970s ushered in advances in chro-
mosomal banding techniques which allowed for much more accu-
rate chromosomal identification, leading to the analysis of
karyotypic changes that characterize leukemias and lymphomas.

Since the 1980s, the integration of molecular biology and
cytogenetics has tremendously broadened the analysis of
rearrangements and other structural aberrations that result from
chromosomal exchanges. Fluorescence in situ hybridization
(FISH) has been invaluable for detecting chromosomal translo-
cations, identifying the chromosomal composition of marker
chromosomes, and revealing the presence of subtle, cryptic chro-
mosomal abnormalities that would otherwise go undetected by
conventional handing methodologies (Gall et al., 1969; John et
al., 1969; Montgomery et al.,1997). Spectral karyotyping {(SKY),
a cytogenetic technique based on FISH that allows for the visu-
alization of all chromosomes at one time with each chromosome
identified by a unique combination of fluorescent dyes, has been
of enormous benefit in the elucidation of complex chromosomal
rearrangements, both in humans and in rodents (Schréck et al.,
1996; Liyanage et al., 1996). Comparative genomic hybridization
(CGH) is another molecular cytogenetic technique which has
proven useful in the study of tumor cells. It involves the compet-
itive hybridization reaction between differentially labeled DINA
from normal cells and tumor DNA on normal metaphase chro-
mosomes, thereby identifying tumor specific genome-wide pat-
terns of chromosomal gains and losses in tumor samples
(Kallioniemi et al., 1992). This technique eliminates the chal-
lenge of preparing chromosomes from tumor samples which are
often short, fuzzy and have a low mirotic index. With CGH,
DNA can be isolated from either fresh or archived tumors, elim-
inating the arduous task of chromosome preparation from tumor
cells.

Sequence Dependent Regions involved in
Recurrent Translocations

Recent advances in the fields of cytogenetics and molecular
biology have introduced a greater understanding of the molecular
mechanisms that are involved in the formation of recurrent
translocations in cancers. Certain specific regions within
chromosomes have been identified as being relevant in
tumorigenesis and are thought to make DNA more susceptible to
recombination. One type of these regions, known as repetitive
DNA, contains sequences that are present in more than one copy.
These repetitive sequences account for more than a third of the
human genome and are ubiquitously interspersed throughout the
genome. Recombination occasionally occurs between the
interspersed repeats and can interrupt sequences, consequently
altering gene function (Schmid, 1996).
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Figure 1: Breckpoints of
recurrent chromosomail
aberrations observed in
cancer that correspond
to Alu rich sites within
R-bands (Figure from
Kolomietz ef al. The Role
of Alu Repeat Clusters
as Mediators of Re-
current  Chromosomal
Aberrations in Tumors.
Genes Chromosomes
and Cancer, 2002; 35:97-
112, Reprinted with per-
mission of Wiley-Liss, Inc.,
a subsidiary of John
Wiley and Sons, Inc.)
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Alu Elements

Two major classes of repetitive sequences are LINES (long
interspersed elements) and SINES (short interspersed elements).
Alu sequences are the most prevalent type of SINE, comprising
about 500,000 to one million copies of repeats, and account for
5% to 109% of the human genome. Given their frequency, Alu ele-
ments have been implicated in a variety of mechanisms involv-
ing genomic rearrangement, the regulation of gene expression,
imprinting, recombination, meiotic mutations, etc. {(Kolomietz et
al., 2002).

Alu elements are 282 base pairs (bp) long, consisting of a 26
bp core with a defined 5 end {that is observed in most of its mem-
bers) and a divergent tandem dimer. There are several subfamilies
of Alu elements and individual Alu family members are highly
homologous to each other. Certain regions of the genome are
much more densely populated with Alu repeats and it has been
shown that they are preferentially localized to the metaphase
chromosome areas known as reverse bands (R-bands)
{(Holmquist, 1992; Craig and Bickmore, 1993). Most of the
mapped human genes can be found in R bands (Tamayo, 2003).
Figure 1 shows the position of known breakpoint regions
frequently involved in genomic rearrangements in cancer. These
regions also correspond to the position of Alu repeats on
R-banded human chromosomes (Kolomietz et al., 2002).

Some recent studies have suggested that the 26 bp Alu core
itself can promote genomic rearrangement. In one such study,
Rudiger et al. (1995) analyzed the rearrangements in the LDL
(low density lipoprotein)-receptor gene of patients with familial

hypercholesterolemia. The LIDL-receptor gene is unique because
although Alu elements are present in the 17 introns of the gene,
they can also be found in the untranslated part of the last exon.
After examining similarities and differences of sequences
involved in recombinational events, it was discovered that the
26 bp consensus sequence of the Alu element was located either
upstream or downstream in all of the LDL-receptor gene
sequences {Figure 2). Thus, it is possible that recombination may
be due to a preference for this sequence.

Homologous Recombination and Al Elements

Accurate repair of damage to DNA is crucial to maintain the
integrity of the genome and to prevent chromosomal rearrange-
ments. Homaologous recombination (HR) is one of the two main
pathways for the repair of double-strand breaks (DSBs) in mam-
malian cells and it functions during the lare S-G, phase of the cell
cycle. DSBs can be generated by DNA-damaging agents such as
ionizing radiation and oxygen radicals, by RAG proteins in V(D)J
recombination, and during replication (Szostak et al.,1983;
Bishop et al., 2000; Lee et al., 2004). When DNA damage
induces HR (HR seeks sequence homology that is similar ro a
region in the damaged strand) an endonuclease cleaves DNA,
leaving free 3" and 5’ ends on each strand so that the damaged
area can be removed. The template may be from a homologous
chromosome, an undamaged sister chromatid, or sequence repeats
on non-homologous chromosomes (i.e., Alu elements). Using this
sequence homology as a template, DNA polymerase fills in the
strand with the correct nucleorides. DNA ligase then seals the
free ends.
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RECOMBINATION IN THE LDL-RECEPTOR GENE

! ! 1 | i ] ! i | i !
FEDK3 41  CYGTCTCAAAAAAACAAAAAAAAGGCTEHGTECABCAGTGLCAGCLTGTAATCCCABCACTTTGRBAGGCCEARRCEERTRBATLACTRAGBTCAAGAGT

FHOK3 81  GCAATGGATTCATTAAGAAAACGCETCRGRCACGETRATTTATGCLTARTAATCE ACTTTGEEAGGCCAAGGCAGRCAGATCACTTAGRCCCARBAG
FH626 41
FH626 &1
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| i I i
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ALU DEIR . it GCTEEECETRATRECTCAL

Figure 2. Recombination of the LDl-receptor gene involving Alu repeats. In a study of patlents with familial hypercholesterclemia,
the LDL-receptor gene was observed in eight rearrangements that could be classified as homologous and non-homologous
recornbination. Five of these recombination events show sequence homology to the Alu repefiitive sequence reported by
Deininger et al. (1981). Three are classified as nonhomologous (indicated). The prefix before the strands denotes the names of the
patients in whom the sequences have been found. The number following the prefix corresponds to the intron number of the
parental sequence except where X' (exon) is added. The I at the end indicates the orientation opposite of franscription and the
lower strand is presented. The regions where the bases are underiined denote the sites of recombination. Therefore, because the
26bp core is highly conserved in these Alu elements, this sequence may be considered a recombinational hotspot. (Figure modified
from Rudiger et al. One short well conserved region of Alu-sequences is involved in human gene rearrangements and has
homology with prokaryotic chi. Nucleic Acids Res. 1995; 23(2):256-260. Reprinted with permission of Oxford University Press.)

Alu Elements and Chromosomal Rearrangements Repair mechanisms such as HR between Alu elements and
other homologous genomic sequences may result in recombina-
tion (Morris et al., 1996). Conversely, Neves et al. (1999) asserts
that the chance of rearrangement is increased due to the attrac-
tion between Alu elements on nonhomologous chromosomes.
Others have observed that when Alu elements are present on
recombinant DNA constructs, they show increased recombina-
tion frequency between vector DNA and host genomic loci (Kato
often yield deletions and duplications and translocations when etal., 1986; Wallenburg et al., 1987; Kang et al., 1999). This evi-
nonhomologous chromosomes are involved (Abeysinghe et al., dence supports the theory that Alu elements are potential “hot
2003). Deininger and Batzer (1999) also have shown that Alu spots” for recombination events and mediate chromosomal

mediated recombination occurring inter-chromosomally (in translocations.
trans) results in complex chromosomal translocations while
unequal crossing over between Alu elements occurring intra-
chromosomally (in cis) results in deletions or duplications of A recent study was conducted to pinpoint the sequences
intervening sequences. involved in translocations and gross deletion breakpoints that are

The repetitive sequences of Alu elements can serve as sites for
unequal crossing over. The Alu sequences may base pair follow-
ing double strand breaks or by physical juxtaposition, or they may
act as substrates for homologous recombination. Homologous
recombination (HR) is mediated by similar regions of homolo-
gous chromesomes, including interspersed repetitive elements
such as Alu sequences. Unequal recombination of such sequences

Alu Repedats Responsible for Humaon Disease
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Table 1. Human diseases associated with Alu repeaais.
(Table adopted from Kolomietz et al., 2002; Deininger and Batzer 1999)

' Disoass

Locus or Gene

Reference

Acute myeloid and lymphoid leukemia

Treatment-related acute lymphoblastic
leukemia

De novo acute myeloid leukemia
CLL

CML, Ph positive acute leukemia
CML

Burkitt lymphoma cell line
Follicular lymphomas (Fi.s)
Fanconi’s anemia

Breast and ovarian cancer

Ewing Sarcoma

Subset of Ewing sarcoma
Association with glioma
Familial colorectal cancer

Hereditary non polyposis colorectal
cancer

Duchenne muscular dystrophy
Ehlers-Danlos syndrome

Fabry disease

Lesch-Nyhon
Neurofibromatosis type 1

Tay-Sachs disease

a-Thalessernia

MLL dup(11)(g23)
1(4:11)(021:923)

121 1)(p22:023)
1(14:19(q32,q13)

Ph franslocation 1(9;22)(g34:g1 1)
Variant Ph franslocation
H2:8)(P11:024)

1(14:18)(g32,:921)

FANCA (16024.3)

BRCAT (17q21)

1(11:22)(a24:a12)
EWSRT (22012.2)
RBI (13014.2)
MLHI(3p21.3)

MSHZ humaon DNA mismatch
gene (2p22-p21)

Dystrophin (Xq22)

Lysine hydroxylase (2g31)
Alpha--galactosidase A (Xg22)
HPRT (X326.1)

NFI (17q11.2)

B-Hexosaminidase a-chain gene
(16023-g24)

a-globin gene cluster (16p13.3)

Strout et al., 1998; Wisdemann et al., 1999
Megonigal et al., 1997

Super et al., 1997
Ohno et al., 1993
Martinelll et al., 2000
Jeffs et al., 1998

Kato et al., 1991
Buchonnet et al., 2000
Morgan et al., 1999

Swensen et al., 1997, Montagna et al,, 1999;
Rohifs et al., 2000

Obata et al., 1999
Zucman-Rossi et al., 1997
Rothberg et al., 1997
Mauillon et al., 1996
Marshall et al,, 1996

Hu et al., 1991

Pousi et al., 1994

Kornreich et al., 1990

Tvrdik et al., 1998; Marcus et al., 1993
Wallace et al., 1991; Xu et al., 1991
Myerowitz and Hogikyan, 1987

Harteveld et al., 1997

associated with human inherited disease and cancer. In establish-
ing the Gross Rearrangement Breakpoint Database (GRaBD)
(www.uwem.ac.ukfuwem/mg/grabd/grabd.html), Abeysinghe et
al. (2003) analyzed 397 chromosomal rearrangement breakpoint
junctions. They screened for the presence of repetitive elements
RepeatMasker Program (http://woody.emhl-heidelberg.de/
repeatmask). These programs found 102 repetitive sequences,
80 of which were located ar breakpoint junctions. Alu elements
were determined to be the most abundant sequence found at the
breakpoint junctions of deletions and translocations analyzed by

the GraBD.

Many different constiturional diseases and some germline dis-
eases have been associated with unequal homologous recombina-
tion between Alu repeats (Huie et al., 1999). After identifying
sixteen cases of cancer attributed to the insertion of Alu elements,
Deininger and Barzer (1999) suggest that 0.1% of human genetic
diseases could be generated by Alu insertion alone. Table 1 is a
summary of some human diseases with translocations or deletions
that are attributed to the presence of Alu repeats. While some of
these diseases have Alu repeats within the breakpoint regions, in
others, Alu repeats are in close proximity to the breakpoints.
Likewise, Ali repeats are also located near a partial duplication of
the MLL gene in AML (acute myeloid leukemia) (Kolomietz et
al., 2002).
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Deletions Involving Alu Repeuats

Salagnick and Dianov (1992) observed that deletions resulted
from the base-pairing of direct repeats flanking the DNA broken
ends of DSBs. When the flanking sequences of broken ends join
together, the intervening sequences are deleted. Small deletions
were observed, ranging from several to 1,500 nucleotides.

A number of human cancers result from small deletions within
certain chromosomal regions. In a study of colorectal cancer,
Plaschke et al. (2003) found a deletion in the promoter region of
the h(MSH6 (mutS homolog 6) gene that likely was mediated by
recombination between homologs of the Sx family of Alu repeats.
Rohlfs et al. (2000) identified a deletion of the BRCAI (breast
cancer 1) gene in breast cancer families resulting from recombi-
nation between closely related Alu repeats. The RBI (retinoblas-
toma) tumor suppressor gene was observed to be deleted in a small
population of brain cancer patients. This deletion was presumed
to be caused by homologous recombination between two Alu
repeats (Rothberg et al., 1997).

Kolomietz et al. {2002) reported that deletions have been
found immediately adjacent to breakpoint regions in aboutr 10%
of leukemia-associated chromosomal rearrangements. They found
deletions adjacent to the two oncogenes, ABL and BCR,
which are rearranged in the formation of the Philadelphia chro-
mosome, in almost 10% of patients with CML and Ph+ ALL. To
examine the relationship of deletion sequences and their
association to chromosomal rearrangement, they submitted the
DNA sequences of the genes involved in the chromosomal
rearrangements and their flanking regions to repeat
identification programs such as Censor (http://www.girinst.org/
Censor_ServerData_Entry Forms.html) and Repeat Masker
(http://frp.genome. washington.edu/cgi-bin/RepeatMasker). The
results showed a strong association between the propensity to
undergo deletion and a high density of Alu repeats in the chro-
mosomal regions involved in rearrangement. Sinclair et al.
(2000) discovered large recurrent deletions at the t(9;22) break-
point junction which they thought may identify a peor prognosis
subgroup of patients with CML. It has been demonstrated that
deletions of base pairs can occur due to exonuclease activity on
the broken ends following double strand breakage (Szostak et al.,
1983; Zucman-Rossi et al., 1998). Each of these studies show that
the deletions are associated with different chromosomal
rearrangements, thereby suggesting that there may be 2 common
mechanism for deletion formation that is sequence specific rather
than disease specific.

Despite the fact that chromosomal deletions occur, Alu medi-
ated deletion is still low, with rates of less than 7x107 and a max-
imum frequency of somatic mutation of less than 10 per cell

(Hollies et al., 2001).

Discussion

The high density of Alu elements in the human genome and
evidence that sequence dependent homologous recombination is
a major DNA repair pathway indicates that there must be a
mechanism regularing unequal

capable of homologous

recombination among dispersed Alu elements and preventing
chromosomal instability.

Deininger and Batzer (1999) point out that there is evidence
that recombination at Alu elements may be more complex than
simple homologous recombination. In the study by Rudiger et al.
(1995) the LDL-receptor gene was observed in recombination
events that involved the specific location of the 26 bp core
sequence within the Alu element. They and other groups have
demonstrated that this core sequence stimulates recombination
and could be a hotspot for a mechanism more broad than
homologous recombination.

However, in several genetic diseases such as ataxia-
telangiectasia {AT) that have a DNA instability phenotype and a
high frequency of carcinogenesis, some genes function as part of
a signaling network in the repair of DSB. Typically the ATM gene
(defective in AT) is a regulator in a cellular checkpoint
mechanism that repairs DSB and maintains cellular survival
(Thompson and Schild, 2002). Since it has been demonstrated
that repetitive elements can serve as sites for unequal homologous
crossing over, potentially leading to translocations and deletions
{Kolomietz et al. 2002), the example of ATM shows that the
recombinogenic effects of Alu elements based on sequence
homology may be regulated by more than just overlap of other
repair mechanisms (i.e., nonhomologous endjoining and single-
strand annealing) in addition to such as HR.

Other factors, such as other repair mechanisms, cell cycle
control, or replication are involved in the repair of double strand
breakage and in the maintenance of the stability of the genome.
However, because there are so many different regulatory
mechanisms and different types of DSBs, at the present time no
one particular regulating mechanism has been implicated.

Recent advances in the fields of cytogenetics and molecular
biology have produced a greater understanding of the molecular
mechanisms that are involved in the formation of recurrent
translocations occurring in cancers. While some researchers have
begun looking at oliognucleotide sequences involved in
translocation breakpoints (Abeysinghe et al. 2003), future
directions towards understanding the role of Alu repeats in
chromosomal rearrangement may include the analysis of the
complete human genome sequence for comparisons of the
presence of Alu repeats and cancer breakpoints.
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Glossary

Alu elements — the most common class of repetitive
sequences that are ubiquitously interspersed throughout
the genome; ~300 base pairs (bp) long; the name is
derived from the restriction site Alu |} also called Alu
repeats and Alu sequences.

SINES - short interspersed elements (100-400 bp long), a
class of repetitive nucleic acid sequences, including Alu
elements, that are widely dispersed throughout the
human genome; derived from transcripts of RNA poly-
merase [II.

LINES - long interspersed glements (~6,500 bp long), a
class of reperitive nucleic acid sequences that are widely
dispersed throughout the human genome; derived from
RNA polymerase 1] transcripts.

Double Strand Break (DSB) - a type of lesion occurring in
both strands of DNA that separates the two strands
resulting in two fragments as opposed to single strand
breaks.

Homologous Recombination (HR) — a mechanism of recom-
bination in mammalian cells that utilizes homologous
sequences of DNA for the repair of double strand breaks.

Endonucleases — enzymes that cleave bonds at specific short
sequences within DNA or RNA, creating internal breaks;
double stranded and single stranded nucleic acids may be
cleaved.

Exonucleases — enzymes rhat digest nucleotides one at a time
from the end of a polynucleotide chain; they can function

at either the 5" or 3" end of DNA or RNA.
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